Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 54(4): 917-929, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33512995

RESUMO

The need for new classes of antibacterials is genuine in light of the dearth of clinical options for the treatment of bacterial infections. The prodigious discoveries of antibiotics during the 1940s to 1970s, a period wistfully referred to as the Golden Age of Antibiotics, have not kept up in the face of emergence of resistant bacteria in the past few decades. There has been a renewed interest in old drugs, the repurposing of the existing antibiotics and pairing of synergistic antibiotics or of an antibiotic with an adjuvant. Notwithstanding, discoveries of novel classes of these life-saving drugs have become increasingly difficult, calling for new paradigms. We describe, herein, three strategies from our laboratories toward discoveries of new antibacterials and adjuvants using computational and multidisciplinary experimental methods. One approach targets penicillin-binding proteins (PBPs), biosynthetic enzymes of cell-wall peptidoglycan, for discoveries of non-ß-lactam inhibitors. Oxadiazoles and quinazolinones emerged as two structural classes out of these efforts. Several hundred analogs of these two classes of antibiotics have been synthesized and fully characterized in our laboratories. A second approach ventures into inhibition of allosteric regulation of cell-wall biosynthesis. The mechanistic details of allosteric regulation of PBP2a of Staphylococcus aureus, discovered in our laboratories, is outlined. The allosteric site in this protein is at 60 Å distance to the active site, whereby ligand binding at the former makes access to the latter by the substrate possible. We have documented that both quinazolinones and ceftaroline, a fifth-generation cephalosporin, bind to the allosteric site in manifestation of the antibacterial activity. Attempts at inhibition of the regulatory phosphorylation events identified three classes of antibacterial adjuvants and one class of antibacterials, the picolinamides. The chemical structures for these hits went through diversification by synthesis of hundreds of analogs. These analogs were characterized in various assays for identification of leads with adjuvant and antibacterial activities. Furthermore, we revisited the mechanism of bulgecins, a class of adjuvants discovered and abandoned in the 1980s. These compounds potentiate the activities of ß-lactam antibiotics by the formation of bulges at the sites of septum formation during bacterial replication, which are points of structural weakness in the envelope. These bulges experience rupture, which leads to bacterial death. Bulgecin A inhibits the lytic transglycosylase Slt of Pseudomonas aeruginosa as a likely transition-state mimetic for its turnover of the cell-wall peptidoglycan. Once damage to cell wall is inflicted by a ß-lactam antibiotic, the function of Slt is to repair the damage. When Slt is inhibited by bulgecin A, the organism cannot cope with it and would undergo rapid lysis. Bulgecin A is an effective adjuvant of ß-lactam antibiotics. These discoveries of small-molecule classes of antibacterials or of adjuvants to antibacterials hold promise in strategies for treatment of bacterial infections.


Assuntos
Adjuvantes Imunológicos/química , Antibacterianos/química , Sítio Alostérico , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Descoberta de Drogas , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Peptidoglicano Glicosiltransferase/metabolismo , Pseudomonas aeruginosa/enzimologia , Quinazolinonas/química , Quinazolinonas/metabolismo , Staphylococcus aureus/metabolismo
2.
Elife ; 92020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32897856

RESUMO

Bacteria surround themselves with peptidoglycan, an adaptable enclosure that contributes to cell shape and stability. Peptidoglycan assembly relies on penicillin-binding proteins (PBPs) acting in concert with SEDS-family transglycosylases RodA and FtsW, which support cell elongation and division respectively. In Bacillus subtilis, cells lacking all four PBPs with transglycosylase activity (aPBPs) are viable. Here, we show that the alternative sigma factor σI is essential in the absence of aPBPs. Defects in aPBP-dependent wall synthesis are compensated by σI-dependent upregulation of an MreB homolog, MreBH, which localizes the LytE autolysin to the RodA-containing elongasome complex. Suppressor analysis reveals that cells unable to activate this σI stress response acquire gain-of-function mutations in the essential histidine kinase WalK, which also elevates expression of sigI, mreBH and lytE. These results reveal compensatory mechanisms that balance the directional peptidoglycan synthesis arising from the elongasome complex with the more diffusive action of aPBPs.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/biossíntese , Fator sigma/genética , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/genética , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Peptidoglicano Glicosiltransferase/metabolismo , Fator sigma/metabolismo , Regulação para Cima
3.
Bioorg Chem ; 97: 103710, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32146179

RESUMO

Moenomycin A, the well-known natural product inhibitor of peptidoglycan glycosyltransferase (PGT), is a large amphiphilic molecule of molecular mass of 1583 g/mol and its bioavailablity as a drug is relatively poor. In searching for small-molecule ligands with high inhibition ability targeting the enzyme, we found that the addition of hydrophobic groups to an isatin-based inhibitor of bacterial PGT significantly improves its inhibition against the enzyme, as well as its antibacterial activity. The improvement in enzymatic inhibition can be attributed to a better binding of the small molecule inhibitor to the hydrophobic region of the membrane-bound bacterial cell wall synthesis enzyme and the plasma membrane. In the present study, a total of 20 new amphiphilic compounds were systematically designed and the relationship between molecular hydrophobicity and the antibacterial activity by targeting at PGT was demonstrated. The in vitro lipid II transglycosylation inhibitory effects (IC50) against E. coli PBP1b and MICs of the compounds were investigated. Optimized results including MIC values of 6 µg/mL for MSSA, MRSA, B. subtilis and 12 µg/mL for E. coli were obtained with an isatin derivative 5m which has a molecular mass of 335 g/mol.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/enzimologia , Isatina/análogos & derivados , Isatina/farmacologia , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Linhagem Celular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Peptidoglicano Glicosiltransferase/metabolismo
4.
Nucleic Acids Res ; 48(3): 1583-1598, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31956908

RESUMO

Cyclic dimeric 3'-5' guanosine monophosphate, c-di-GMP, is a ubiquitous second messenger controlling diverse cellular processes in bacteria. In streptomycetes, c-di-GMP plays a crucial role in a complex morphological differentiation by modulating an activity of the pleiotropic regulator BldD. Here we report that c-di-GMP plays a key role in regulating secondary metabolite production in streptomycetes by altering the expression levels of bldD. Deletion of cdgB encoding a diguanylate cyclase in Streptomycesghanaensis reduced c-di-GMP levels and the production of the peptidoglycan glycosyltransferase inhibitor moenomycin A. In contrast to the cdgB mutant, inactivation of rmdB, encoding a phosphodiesterase for the c-di-GMP hydrolysis, positively correlated with the c-di-GMP and moenomycin A accumulation. Deletion of bldD adversely affected the synthesis of secondary metabolites in S. ghanaensis, including the production of moenomycin A. The bldD-deficient phenotype is partly mediated by an increase in expression of the pleiotropic regulatory gene wblA. Genetic and biochemical analyses demonstrate that a complex of c-di-GMP and BldD effectively represses transcription of wblA, thus preventing sporogenesis and sustaining antibiotic synthesis. These results show that manipulation of the expression of genes controlling c-di-GMP pool has the potential to improve antibiotic production as well as activate the expression of silent gene clusters.


Assuntos
Proteínas de Bactérias/genética , Bambermicinas/biossíntese , Produtos Biológicos/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/antagonistas & inibidores , GMP Cíclico/genética , GMP Cíclico/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Nucleotídeos/genética , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Fósforo-Oxigênio Liases/genética , Sistemas do Segundo Mensageiro/genética , Streptomycetaceae/genética , Streptomycetaceae/metabolismo , Fatores de Transcrição/antagonistas & inibidores
5.
BMC Microbiol ; 19(1): 140, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234796

RESUMO

BACKGROUND: Persisters are rare phenotypic variants within a bacterial population that are capable of tolerating lethal antibiotic concentrations. Passage through stationary phase is associated with the formation of persisters (type I), and a major physiological response of Escherichia coli during stationary phase is cell wall restructuring. Given the concurrence of these processes, we sought to assess whether perturbation to cell wall synthesis during stationary phase impacts type I persister formation. RESULTS: We tested a panel of cell wall inhibitors and found that piperacillin, which primarily targets penicillin binding protein 3 (PBP3 encoded by ftsI), resulted in a significant reduction in both ß-lactam (ampicillin, carbenicillin) and fluoroquinolone (ofloxacin, ciprofloxacin) persister levels. Further analyses showed that piperacillin exposure through stationary phase resulted in cells with more ATP, DNA, RNA, and protein (including PBPs) than untreated controls; and that their physiology led to more rapid resumption of DNA gyrase supercoiling activity, translation, and cell division upon introduction into fresh media. Previously, PBP3 inhibition had been linked to antibiotic efficacy through the DpiBA two component system; however, piperacillin suppressed persister formation in ΔdpiA to the same extent as it did in wild-type, suggesting that DpiBA is not required for the phenomenon reported here. To test the generality of PBP3 inhibition on persister formation, we expressed FtsI Ser307Ala to genetically inhibit PBP3, and suppression of persister formation was also observed, although not to the same magnitude as that seen for piperacillin treatment. CONCLUSIONS: From these data we conclude that stationary phase PBP3 activity is important to type I persister formation in E. coli.


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/crescimento & desenvolvimento , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Piperacilina/farmacologia , Parede Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fluoroquinolonas/farmacologia , Mutação , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano Glicosiltransferase/genética , Fenótipo , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , beta-Lactamas/farmacologia
6.
Biochimie ; 152: 1-5, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29909047

RESUMO

Peptidoglycan glycosyltransferases (GTase) of family 51 are essential enzymes for the synthesis of the glycan chains of the bacterial cell wall. They are considered potential antibacterial target, but discovery of inhibitors was hampered so far by the lack of efficient and affordable screening assay. Here we used Staphylococcus aureus MtgA to introduce a single tryptophan reporter residue in selected positions flanking the substrates binding cavity of the protein. We selected a mutant (Y181W) that shows strong fluorescence quenching in the presence of moenomycin A and two lipid II analogs inhibitors. The assay provides a simple method to study GTase-ligand interactions and can be used as primary high throughput screening of GTase inhibitors without the need for lipid II substrate or reporter ligands.


Assuntos
Ensaios de Triagem em Larga Escala , Peptidoglicano Glicosiltransferase/metabolismo , Staphylococcus aureus/enzimologia , Triptofano/metabolismo , Bambermicinas/metabolismo , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Ligantes , Mutagênese Sítio-Dirigida , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Peptidoglicano Glicosiltransferase/genética , Ligação Proteica , Espectrometria de Fluorescência , Especificidade por Substrato , Triptofano/genética , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
7.
Chem Commun (Camb) ; 53(4): 771-774, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27999831

RESUMO

Lipid II analogues bearing major modifications on the second sugar (GlcNAc) were synthesized and evaluated for their substrate activity toward TGases. Unexpectedly, N-deacetyled lipid II decreased its activity dramatically, and the C4-axial OH lipid II became an inhibitor (IC50 = 8 µM) with an approximately 14-fold increase in binding affinity toward TGase (25 vs. 27).


Assuntos
Clostridioides difficile/enzimologia , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Lipídeos/farmacologia , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Açúcares/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Lipídeos/química , Peptidoglicano Glicosiltransferase/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Açúcares/síntese química , Açúcares/química
8.
Chem Biol Drug Des ; 87(2): 190-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26358369

RESUMO

Synthesis of bacterial cell wall peptidoglycan requires glycosyltransferase enzymes that transfer the disaccharide-peptide from lipid II onto the growing glycan chain. The polymerization of the glycan chain precedes cross-linking by penicillin-binding proteins and is essential for growth for key bacterial pathogens. As such, bacterial cell wall glycosyltransferases are an attractive target for antibiotic drug discovery. However, significant challenges to the development of inhibitors for these targets include the development of suitable assays and chemical matter that is suited to the nature of the binding site. We developed glycosyltransferase enzymatic activity and binding assays using the natural products moenomycin and vancomycin as model inhibitors. In addition, we designed a library of disaccharide compounds based on the minimum moenomycin fragment with peptidoglycan glycosyltransferase inhibitory activity and based on a more drug-like and synthetically versatile disaccharide building block. A subset of these disaccharide compounds bound and inhibited the glycosyltransferase enzymes, and these compounds could serve as chemical entry points for antibiotic development.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Parede Celular/metabolismo , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Peptidoglicano/biossíntese , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Desenho de Fármacos , Escherichia coli/enzimologia , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Estrutura Terciária de Proteína , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/química , Vancomicina/metabolismo , Vancomicina/farmacologia
9.
J Med Chem ; 58(24): 9712-21, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26588190

RESUMO

Penicillin-binding proteins represent well-established, validated, and still very promising targets for the design and development of new antibacterial agents. The transglycosylase domain of penicillin-binding proteins is especially important, as it catalyzes polymerization of glycan chains, using the peptidoglycan precursor lipid II as a substrate. On the basis of the previous discovery of a noncovalent small-molecule inhibitor of transglycosylase activity, we systematically explored the structure-activity relationships of these tryptamine-based inhibitors. The main aim was to reduce the nonspecific cytotoxic properties of the initial hit compound and concurrently to retain the mode of its inhibition. A focused library of tryptamine-based compounds was synthesized, characterized, and evaluated biochemically. The results presented here show the successful reduction of the nonspecific cytotoxicity, and the retention of the inhibition of transglycosylase enzymatic activity, as well as the ability of these compounds to bind to lipid II and to have antibacterial actions.


Assuntos
Antibacterianos/química , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , D-Ala-D-Ala Carboxipeptidase Tipo Serina/antagonistas & inibidores , Triptaminas/química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Enterococcus faecium/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Células HEK293 , Humanos , Resistência a Meticilina , Testes de Sensibilidade Microbiana , Ligação Proteica , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Triptaminas/farmacologia , Triptaminas/toxicidade , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
10.
Chem Biol Drug Des ; 84(6): 685-96, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24890564

RESUMO

Peptidoglycan glycosyltransferase (PGT) has been shown to be an important pharmacological target for the inhibition of bacterial cell wall biosynthesis. Structure-based virtual screening of about 3,000,000 commercially available compounds against the crystal structure of the glycosyltransferase (GT) domain of the Staphylococcus aureus penicillin-binding protein 2 (S. aureus PBP2) resulted in identification of an isatin derivative, 2-(3-(2-carbamimidoylhydrazono)-2-oxoindolin-1-yl)-N-(m-tolyl)acetamide (4) as a novel potential GT inhibitor. A series of 4 derivatives were synthesized. Several compounds showed more active antimicrobial activity than the initial hit compound 4, in particular 2-(3-(2-carbamimidoylhydrazono)-2-oxoindolin-1-yl)-N-(3-nitrophenyl)acetamide (4l), against Gram-positive Bacillus subtilis and S. aureus with MIC values of 24 and 48 µg/mL, respectively. Saturation transfer difference (STD) NMR study revealed that there is a binding contact between 4l and the GT domain of S. aureus PBP2. Competitive STD-NMR further proved that 4l and moenomycin A bind to GT domain in a competitive manner. Molecular docking study suggests a potential binding pocket of 4l in the GT domain of S. aureus PBP2. Taken together, compound 4l would provide a new scaffold for further development of potent GT inhibitors.


Assuntos
Antibacterianos/síntese química , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Isatina/química , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bambermicinas/química , Bambermicinas/farmacologia , Sítios de Ligação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Isatina/síntese química , Isatina/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Peptidoglicano Glicosiltransferase/metabolismo , Estrutura Terciária de Proteína , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade
11.
Bioorg Chem ; 55: 16-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24924926

RESUMO

The lack of novel antimicrobial drugs under development coupled with the increasing occurrence of resistance to existing antibiotics by community and hospital acquired infections is of grave concern. The targeting of biosynthesis of the peptidoglycan component of the bacterial cell wall has proven to be clinically valuable but relatively little therapeutic development has been directed towards the transglycosylase step of this process. Advances towards the isolation of new antimicrobials that target transglycosylase activity will rely on the development of the enzymological tools required to identify and characterise novel inhibitors of these enzymes. Therefore, in this article, we review the assay methods developed for transglycosylases and review recent novel chemical inhibitors discovered in relation to both the lipidic substrates and natural product inhibitors of the transglycosylase step.


Assuntos
Inibidores Enzimáticos/farmacologia , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Peptidoglicano/biossíntese , Peptidoglicano/química , Animais , Humanos
12.
J Am Chem Soc ; 135(45): 17078-89, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24131464

RESUMO

The emergence of antibiotic resistance has prompted scientists to search for new antibiotics. Transglycosylase (TGase) is an attractive target for new antibiotic discovery due to its location on the outer membrane of bacteria and its essential role in peptidoglycan synthesis. Though there have been a few molecules identified as TGase inhibitors in the past thirty years, none of them have been developed into antibiotics for humans. The slow pace of development is perhaps due to the lack of continuous, quantitative, and high-throughput assay available for the enzyme. Herein, we report a new continuous fluorescent assay based on Förster resonance energy transfer, using lipid II analogues with a dimethylamino-azobenzenesulfonyl quencher in the lipid chain and a coumarin fluorophore in the peptide chain. During the process of transglycosylation, the quencher-appended polyprenol is released and the fluorescence of coumarin can be detected. Using this system, the substrate specificity and affinity of lipid II analogues bearing various numbers and configurations of isoprene units were investigated. Moreover, the inhibition constants of moenomycin and two previously identified small molecules were also determined. In addition, a high-throughput screening using the new assay was conducted to identify potent TGase inhibitors from a 120,000 compound library. This new continuous fluorescent assay not only provides an efficient and convenient way to study TGase activities, but also enables the high-throughput screening of potential TGase inhibitors for antibiotic discovery.


Assuntos
Bactérias/enzimologia , Transferência Ressonante de Energia de Fluorescência/métodos , Peptidoglicano Glicosiltransferase/metabolismo , Cumarínicos/química , Cumarínicos/metabolismo , Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/química , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
13.
Open Biol ; 3(10): 130121, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24153004

RESUMO

Unlike the majority of actinomycete secondary metabolic pathways, the biosynthesis of peptidoglycan glycosyltransferase inhibitor moenomycin in Streptomyces ghanaensis does not involve any cluster-situated regulators (CSRs). This raises questions about the regulatory signals that initiate and sustain moenomycin production. We now show that three pleiotropic regulatory genes for Streptomyces morphogenesis and antibiotic production-bldA, adpA and absB-exert multi-layered control over moenomycin biosynthesis in native and heterologous producers. The bldA gene for tRNA(Leu)UAA is required for the translation of rare UUA codons within two key moenomycin biosynthetic genes (moe), moeO5 and moeE5. It also indirectly influences moenomycin production by controlling the translation of the UUA-containing adpA and, probably, other as-yet-unknown repressor gene(s). AdpA binds key moe promoters and activates them. Furthermore, AdpA interacts with the bldA promoter, thus impacting translation of bldA-dependent mRNAs-that of adpA and several moe genes. Both adpA expression and moenomycin production are increased in an absB-deficient background, most probably because AbsB normally limits adpA mRNA abundance through ribonucleolytic cleavage. Our work highlights an underappreciated strategy for secondary metabolism regulation, in which the interaction between structural genes and pleiotropic regulators is not mediated by CSRs. This strategy might be relevant for a growing number of CSR-free gene clusters unearthed during actinomycete genome mining.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Genes Bacterianos , Genes Reguladores , Oligossacarídeos/biossíntese , Streptomyces/genética , Proteínas de Bactérias/genética , Códon , Simulação por Computador , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Mutação , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Regiões Promotoras Genéticas , RNA Bacteriano , RNA de Transferência de Leucina/genética , RNA de Transferência de Leucina/metabolismo , Metabolismo Secundário/genética , Metabolismo Secundário/fisiologia , Transdução de Sinais , Streptomyces/metabolismo , Transativadores/metabolismo
14.
J Am Chem Soc ; 135(10): 3776-9, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23448584

RESUMO

New antibiotic drugs need to be identified to address rapidly developing resistance of bacterial pathogens to common antibiotics. The natural antibiotic moenomycin A is the prototype for compounds that bind to bacterial peptidoglycan glycosyltransferases (PGTs) and inhibit cell wall biosynthesis, but it cannot be used as a drug. Here we report the chemoenzymatic synthesis of a fluorescently labeled, truncated analogue of moenomycin based on the minimal pharmacophore. This probe, which has optimized enzyme binding properties compared to moenomycin, was designed to identify low-micromolar inhibitors that bind to conserved features in PGT active sites. We demonstrate its use in displacement assays using PGTs from S. aureus, E. faecalis, and E. coli. 110,000 compounds were screened against S. aureus SgtB, and we identified a non-carbohydrate based compound that binds to all PGTs tested. We also show that the compound inhibits in vitro formation of peptidoglycan chains by several different PGTs. Thus, this assay enables the identification of small molecules that target PGT active sites, and may provide lead compounds for development of new antibiotics.


Assuntos
Antibacterianos/farmacologia , Bambermicinas/farmacologia , Parede Celular/efeitos dos fármacos , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/biossíntese , Antibacterianos/química , Bambermicinas/biossíntese , Bambermicinas/química , Parede Celular/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptidoglicano Glicosiltransferase/metabolismo , Staphylococcus aureus/citologia
15.
PLoS One ; 7(11): e48598, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139798

RESUMO

The combination of antibiotics is one of the strategies to combat drug-resistant bacteria, though only a handful of such combinations are in use, such as the ß-lactam combinations. In the present study, the efficacy of a specific sub-inhibitory concentration of cefsulodin with other ß-lactams was evaluated against a range of Gram-negative clinical isolates. This approach increased the sensitivity of the isolates, regardless of the ß-lactamase production. The preferred target and mechanism of action of cefsulodin were identified in laboratory strains of Escherichia coli, by examining the effects of deleting the penicillin-binding protein (PBP) 1a and 1b encoding genes individually. Deletion of PBP1b was involved in sensitizing the bacteria to ß-lactam agents, irrespective of its O-antigen status. Moreover, the use of a sub-inhibitory concentration of cefsulodin in combination with a ß-lactam exerted an effect similar to that one obtained for PBP1b gene deletion. We conclude that the identified ß-lactam/cefsulodin combination works by inhibiting PBP1b (at least partially) despite the involvement of ß-lactamases, and therefore could be extended to a broad range of Gram-negative pathogens.


Assuntos
Cefsulodina/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , D-Ala-D-Ala Carboxipeptidase Tipo Serina/antagonistas & inibidores , Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/imunologia , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Fluorescência , Deleção de Genes , Humanos , Testes de Sensibilidade Microbiana , Mutação/genética , Antígenos O/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Fatores de Tempo , beta-Lactamases/metabolismo
16.
J Am Chem Soc ; 134(22): 9343-51, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22550974

RESUMO

The peptidoglycan glycosyltransferases (GTs) are essential enzymes that catalyze the polymerization of glycan chains of the bacterial cell wall from lipid II and thus constitute a validated antibacterial target. Their enzymatic cavity is composed of a donor site for the growing glycan chain (where the inhibitor moenomycin binds) and an acceptor site for lipid II substrate. In order to find lead inhibitors able to fill this large active site, we have synthesized a series of substrate analogues of lipid I and lipid II with variations in the lipid, the pyrophosphate, and the peptide moieties and evaluated their biological effect on the GT activity of E. coli PBP1b and their antibacterial potential. We found several compounds able to inhibit the GT activity in vitro and cause growth defect in Bacillus subtilis . The more active was C16-phosphoglycerate-MurNAc-(L-Ala-D-Glu)-GlcNAc, which also showed antibacterial activity. These molecules are promising leads for the design of new antibacterial GT inhibitors.


Assuntos
Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Peptidoglicano/farmacologia , Conformação Molecular , Peptidoglicano/química , Peptidoglicano Glicosiltransferase/metabolismo , Relação Estrutura-Atividade
17.
Biochem Pharmacol ; 81(9): 1098-105, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356201

RESUMO

Bacterial peptidoglycan glycosyltransferases (GTs) of family 51 catalyze the polymerization of the lipid II precursor into linear peptidoglycan strands. This activity is essential to bacteria and represents a validated target for the development of new antibacterials. Application of structure-based virtual screening to the National Cancer Institute library using eHits program and the structure of the glycosyltransferase domain of the Staphylococcus aureus penicillin-binding protein 2 resulted in the identification of two small molecules analogues 5, a 2-[1-[(2-chlorophenyl)methyl]-2-methyl-5-methylsulfanylindol-3-yl]ethanamine and 5b, a 2-[1-[(3,4-dichlorophenyl)methyl]-2-methyl-5-methylsulfanylindol-3-yl]ethanamine that exhibit antibacterial activity against several Gram-positive bacteria but were less active on Gram-negative bacteria. The two compounds inhibit the activity of five GTs in the micromolar range. Investigation of the mechanism of action shows that the compounds specifically target peptidoglycan synthesis. Unexpectedly, despite the fact that the compounds were predicted to bind to the GT active site, compound 5b was found to interact with the lipid II substrate via the pyrophosphate motif. In addition, this compound showed a negatively charged phospholipid-dependent membrane depolarization and disruption activity. These small molecules are promising leads for the development of more active and specific compounds to target the essential GT step in cell wall synthesis.


Assuntos
Metabolismo dos Lipídeos , Peptidoglicano/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Biocatálise , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptidoglicano/biossíntese , Peptidoglicano Glicosiltransferase/antagonistas & inibidores
18.
Biol Chem ; 391(5): 499-504, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20302515

RESUMO

Moenomycins are phosphoglycolipid antibiotics and the only known natural product inhibitors of peptidoglycan glycosytransferases (PGTs). Techniques that would allow facile diversification of the moenomycin structure would facilitate the development of novel antibiotics, which are urgently needed in the wake of multidrug resistant bacterial infections. The cloning and initial characterization of the moenomycin biosynthetic genes has already redefined the minimal moenomycin pharmacophore and now opens the door for the biocombinatorial generation of bioactive moenomycin fragments. Here, we highlight the importance of research on the genetic mechanisms that regulate moenomycin biosynthesis and that confer moenomycin resistance to bacteria in the development of novel anti-infectives based on PGT inhibition.


Assuntos
Bambermicinas/biossíntese , Bambermicinas/farmacologia , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/farmacologia , Bambermicinas/química , Parede Celular/efeitos dos fármacos , Farmacorresistência Bacteriana , Oligossacarídeos/biossíntese , Oligossacarídeos/genética , Proteínas de Ligação às Penicilinas/química
19.
Bioorg Med Chem Lett ; 19(21): 6189-91, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19783144

RESUMO

Ramoplanin is a potent lipoglycodepsipeptide antibiotic that is active against a wide range of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE). It acts as an inhibitor of peptidoglycan (PG) biosynthesis that disrupts glycan chain polymerization by binding and sequestering Lipid II, a PG precursor. Herein, we report the functional antimicrobial activity (MIC, S. aureus) and fundamental biochemical assessments against a peptidoglycan glycosyltransferase (Escherichia coli PBP1b) of a set of key alanine scan analogues of ramoplanin that provide insight into the importance and role of each of its individual amino acid residues.


Assuntos
Antibacterianos/química , Depsipeptídeos/química , Antibacterianos/farmacologia , Depsipeptídeos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/enzimologia , Bactérias Gram-Positivas/efeitos dos fármacos , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Peptidoglicano Glicosiltransferase/metabolismo
20.
Biochemistry ; 48(37): 8830-41, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19640006

RESUMO

The moenomycins are phosphoglycolipid antibiotics produced by Streptomyces ghanaensis and related organisms. The phosphoglycolipids are the only known active site inhibitors of the peptidoglycan glycosyltransferases, an important family of enzymes involved in the biosynthesis of the bacterial cell wall. Although these natural products have exceptionally potent antibiotic activity, pharmacokinetic limitations have precluded their clinical use. We previously identified the moenomycin biosynthetic gene cluster in order to facilitate biosynthetic approaches to new derivatives. Here, we report a comprehensive set of genetic and enzymatic experiments that establish functions for the 17 moenomycin biosynthetic genes involved in the synthesis of moenomycin and variants. These studies reveal the order of assembly of the full molecular scaffold and define a subset of seven genes involved in the synthesis of bioactive analogues. This work will enable both in vitro and fermentation-based reconstitution of phosphoglycolipid scaffolds so that chemoenzymatic approaches to novel analogues can be explored.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/química , Bambermicinas/biossíntese , Bambermicinas/química , Genes Bacterianos , Família Multigênica , Farmacorresistência Bacteriana , Deleção de Genes , Glicolipídeos/biossíntese , Glicolipídeos/química , Peptidoglicano Glicosiltransferase/antagonistas & inibidores , Peptidoglicano Glicosiltransferase/química , Peptidoglicano Glicosiltransferase/genética , Fosfolipídeos/biossíntese , Fosfolipídeos/química , Streptomyces/metabolismo , Streptomyces lividans/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...